
CSE 451: Operating Systems

Winter 2013

OS Structural Overview

Gary Kimura

2

OS structure

• The OS sits between application programs and the

hardware

– it mediates access and abstracts away ugliness

– programs request services via exceptions (traps or faults)

– devices request attention via interrupts

OS

P1

P2 P3

P4

D1

D2 D3
D4

exception
interrupt

dispatch

start i/o

3

Major OS components

• Processes

• Memory

• I/O

• Secondary storage

• File systems

• Protection

• Security

• Networking

• Accounting

• Shells (command interpreter, or OS UI)

• GUI

4

Process management

• An OS executes many kinds of activities:

– users’ programs

– batch jobs or scripts

– system programs

• print spoolers, name servers, file servers, network

daemons, …

• Each of these activities is encapsulated in a process

– a process includes the execution context

• PC, registers, VM, OS resources (e.g., open files), etc…

• plus the program itself (code and data)

– the OS’s process module manages these processes

• creation, destruction, scheduling, …

5

Program/processor/process

• Note that a program is totally passive

– just bytes on a disk that encode instructions to be run

• A process is an instance of a program being

executed by a (real or virtual) processor

– at any instant, there may be many processes running copies

of the same program (e.g., an editor); each process is

separate and (usually) independent

– Use TASKMGR to list all processes

 process A process B

code

stack

PC

registers

code

stack

PC

registers

page

tables

resources

page

tables

resources

6

Process operations

• The OS provides the following kinds operations on

processes (i.e., the process abstraction interface):

– create a process

– delete a process

– suspend a process

– resume a process

– clone a process

– inter-process communication

– inter-process synchronization

– create/delete a child process (subprocess)

7

Memory management

• The primary memory (or RAM) is the directly

accessed storage for the CPU

– programs must be stored in memory to execute

– memory access is fast (e.g., 60 ns to load/store)

• but most memory doesn’t survive power failures

• OS must:

– allocate memory space for programs (explicitly and implicitly)

– deallocate space when needed by rest of system

– maintain mappings from physical to virtual memory

• through page tables (hardware support feature)

– decide how much memory to allocate to each process

• a policy decision

– decide when to remove a process from memory

• also policy

8

I/O

• A big chunk of the OS kernel deals with I/O

– hundreds of thousands of lines in NT

• The OS provides a standard interface between

programs (user or system) and devices

– file system (disk), sockets (network), frame buffer (video)

• Device drivers are the routines that interact with

specific device types

– encapsulates device-specific knowledge

• e.g., how to initialize a device, how to request I/O, how to

handle interrupts or errors

• examples: SCSI device drivers, Ethernet card drivers,

video card drivers, sound card drivers, …

• Note: Windows has ~35,000 device drivers!

9

Secondary storage

• Secondary storage (disk, tape) is persistent memory

– often magnetic media, survives power failures (hopefully)

– This can be both good and bad

• Routines that interact with disks are typically at a very

low level in the OS

– used by many components (file system, VM, …)

– handle scheduling of disk operations, head movement, error

handling, and often management of space on disks

– disk controllers are continually getting smarter

• Usually independent of file system

– although there may be cooperation

– file system knowledge of device details can help optimize

performance

• e.g., place related files close together on disk

10

File systems

• Secondary storage devices are crude and awkward

– e.g., “write 4096 byte block to sector 12”

• File system: a convenient abstraction

– defines logical objects like files and directories

• hides details about where on disk files live

– as well as operations on objects like read and write

• read/write byte ranges instead of blocks

• A file is the basic unit of long-term storage

– file = named collection of persistent information

• A directory is just a special kind of file

– directory = named file that contains names of other files and

metadata about those files (e.g., file size)

• Note: Sequential byte stream is only one possibility!

11

File system operations

• The file system interface defines standard operations:

– file (or directory) creation and deletion

– manipulation of files and directories (read, write, extend,

rename, protect)

– copy

– lock

• File systems also provide higher level services

– accounting and quotas

– (sometimes) backup

– (sometimes) indexing or search

– (sometimes) file versioning

12

Protection

• Protection is a general mechanism used throughout

the OS

– all resources needed to be protected

• memory

• processes

• files

• devices

• CPU time

• …

– protection mechanisms help to detect and contain

unintentional errors, as well as preventing malicious

destruction

13

Command interpreter (shell)

• A particular program that handles the interpretation of

users’ commands and helps to manage processes

– user input may be from keyboard (command-line interface),

from script files, or from the mouse (GUIs)

– allows users to launch and control new programs

• On some systems, command interpreter may be a

standard part of the OS (e.g., MS DOS, Apple II)

• On others, it’s just non-privileged code that provides

an interface to the user

– e.g., bash/csh/tcsh/zsh on UNIX

• On others, there may be no command language

– e.g., MacOS

14

Accounting

• Keeps track of resource usage

– both to enforce quotas

• “you’re over your disk space limit”

– or to produce bills

• timeshared computers like mainframes

• hosted services

15

OS structure

• It’s not always clear how to stitch OS modules

together:

Memory
Management

I/O System

Secondary Storage
Management

File System

Protection System

Accounting System

Process Management

Command Interpreter

Information Services

Error Handling

16

OS structure

• An OS consists of all of these components, plus:

– many other components

– system programs (privileged and non-privileged)

• e.g., bootstrap code, the init program, …

• Major issue:

– how do we organize all this?

– what are all of the code modules, and where do they exist?

– how do they cooperate?

• Massive software engineering and design problem

– design a large, complex program that:

• performs well, is reliable, is extensible, is backwards

compatible, …

17

Early structure: Monolithic

• Traditionally, OS’s (like UNIX) were built as a

monolithic entity:

everything

user programs

hardware

OS

18

Monolithic design

• Major advantage:

– cost of module interactions is low (procedure call)

• Disadvantages:

– hard to understand

– hard to modify

– unreliable (no isolation between system modules)

– hard to maintain

• What is the alternative?

– find a way to organize the OS in order to simplify its design

and implementation

19

Layering

• The traditional approach is layering

– implement OS as a set of layers

– each layer presents an enhanced ‘virtual machine’ to the layer above

• The first description of this approach was Dijkstra’s THE system

– Layer 5: Job Managers (Execute users’ programs)

– Layer 4: Device Managers (Handle devices and provide buffering)

– Layer 3: Console Manager (Implements virtual consoles)

– Layer 2: Page Manager (Implements virtual memories for each process)

– Layer 1: Kernel (Implements a virtual processor for each process)

– Layer 0: Hardware

• Each layer can be tested and verified independently

20

Problems with layering

• Imposes hierarchical structure

– but real systems are more complex:

• file system requires VM services (buffers)

• VM would like to use files for its backing store

– strict layering isn’t flexible enough

• Poor performance

– each layer crossing has overhead associated with it

• Disjunction between model and reality

– systems modeled as layers, but not really built that way

21

Hardware Abstraction Layer

• An example of layering in

modern operating systems

• Goal: separates hardware-

specific routines from the “core”

OS

– Provides portability

– Improves readability

Core OS

(file system,

scheduler,

system calls)

Hardware Abstraction

Layer

(device drivers,

assembly routines)

22

Microkernels

• Popular in the late 80’s, early 90’s

– recent resurgence of popularity

• Goal:

– minimize what goes in kernel

– organize rest of OS as user-level processes

• This results in:

– better reliability (isolation between components)

– ease of extension and customization

– poor performance (user/kernel boundary crossings)

• First microkernel system was Hydra (CMU, 1970)

– Follow-ons: Mach (CMU), Chorus (French UNIX-like OS), OS X (Apple), in

some opinions Windows NT (Microsoft)

• Windows NT (aka XP/Vista/Win7) designed as microkernel but

executed as single kernel-mode image

23

Microkernel System Structure

hardware

microkernel low-level

VM
protection

processor

control

system processes

file system

thread

system

communication

external

paging
network

support

high-level

scheduling

user processes

kernel mode

user mode

24

Hardware (CPU, devices)

Application Interface (API)

Hardware Abstraction Layer

File

Systems

Memory

Manager

Process

Manager

Network

Support

Device

Drivers

Interrupt

Handlers

Boot &

Init

Java Photoshop Firefox

O
p

er
at

in
g

 S
y

st
em

 P
o

rtab
le

U
se

r
A

p
p
s

Acrobat

The Sanitized Picture of OS Structure

25

Summary and Next Topic

• Summary
– OS design has been a evolutionary process of trial and error.

Probably more error than success

– Successful OS’s designs have run the spectrum from
monolithic, to layered, to micro kernels, to virtual machines

– The role and design of an OS is still evolving

– It is impossible to pick one “correct” way to structure an OS

• Next Topic
– Processes, one of the most fundamental pieces in an OS

– What is a process, what does it do, and how does it do it

