
CSE 451: Operating Systems 

Winter 2013 

 

OS Structural Overview 

Gary Kimura 



2 

OS structure 

• The OS sits between application programs and the 

hardware 

– it mediates access and abstracts away ugliness 

– programs request services via exceptions (traps or faults) 

– devices request attention via interrupts 
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Major OS components 

• Processes 

• Memory 

• I/O 

• Secondary storage 

• File systems 

• Protection 

• Security 

• Networking 

• Accounting 

• Shells (command interpreter, or OS UI) 

• GUI 
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Process management 

• An OS executes many kinds of activities: 

– users’ programs 

– batch jobs or scripts 

– system programs 

• print spoolers, name servers, file servers, network 

daemons, … 

• Each of these activities is encapsulated in a process 

– a process includes the execution context 

• PC, registers, VM, OS resources (e.g., open files), etc… 

• plus the program itself (code and data) 

– the OS’s process module manages these processes 

• creation, destruction, scheduling, … 
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Program/processor/process 

• Note that a program is totally passive 

– just bytes on a disk that encode instructions to be run 

• A process is an instance of a program being 

executed by a (real or virtual) processor 

– at any instant, there may be many processes running copies 

of the same program (e.g., an editor); each process is 

separate and (usually) independent 

– Use TASKMGR  to list all processes 
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Process operations 

• The OS provides the following kinds operations on 

processes (i.e., the process abstraction interface): 

– create a process 

– delete a process 

– suspend a process 

– resume a process 

– clone a process 

– inter-process communication 

– inter-process synchronization 

– create/delete a child process (subprocess) 
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Memory management 

• The primary memory (or RAM) is the directly 

accessed storage for the CPU 

– programs must be stored in memory to execute 

– memory access is fast (e.g., 60 ns to load/store) 

• but most memory doesn’t survive power failures 

• OS must: 

– allocate memory space for programs (explicitly and implicitly) 

– deallocate space when needed by rest of system 

– maintain mappings from physical to virtual memory 

• through page tables (hardware support feature) 

– decide how much memory to allocate to each process 

• a policy decision 

– decide when to remove a process from memory 

• also policy 
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I/O 

• A big chunk of the OS kernel deals with I/O 

– hundreds of thousands of lines in NT 

• The OS provides a standard interface between 

programs (user or system) and devices 

– file system (disk), sockets (network), frame buffer (video) 

• Device drivers are the routines that interact with 

specific device types 

– encapsulates device-specific knowledge 

• e.g., how to initialize a device, how to request I/O, how to 

handle interrupts or errors 

• examples: SCSI device drivers, Ethernet card drivers, 

video card drivers, sound card drivers, … 

• Note:  Windows has ~35,000 device drivers! 
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Secondary storage 

• Secondary storage (disk, tape) is persistent memory 

– often magnetic media, survives power failures (hopefully) 

– This can be both good and bad 

• Routines that interact with disks are typically at a very 

low level in the OS 

– used by many components (file system, VM, …) 

– handle scheduling of disk operations, head movement, error 

handling, and often management of space on disks 

– disk controllers are continually getting smarter 

• Usually independent of file system 

– although there may be cooperation 

– file system knowledge of device details can help optimize 

performance 

• e.g., place related files close together on disk 
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File systems 

• Secondary storage devices are crude and awkward 

– e.g., “write 4096 byte block to sector 12” 

• File system: a convenient abstraction 

– defines logical objects like files and directories 

• hides details about where on disk files live 

– as well as operations on objects like read and write 

• read/write byte ranges instead of blocks 

• A file is the basic unit of long-term storage 

– file = named collection of persistent information 

• A directory is just a special kind of file 

– directory = named file that contains names of other files and 

metadata about those files (e.g., file size) 

• Note:  Sequential byte stream is only one possibility! 
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File system operations 

• The file system interface defines standard operations: 

– file (or directory) creation and deletion 

– manipulation of files and directories (read, write, extend, 

rename, protect) 

– copy 

– lock 

• File systems also provide higher level services 

– accounting and quotas 

– (sometimes) backup 

– (sometimes) indexing or search 

– (sometimes) file versioning 
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Protection 

• Protection is a general mechanism used throughout 

the OS 

– all resources needed to be protected 

• memory 

• processes 

• files 

• devices 

• CPU time 

• … 

– protection mechanisms help to detect and contain 

unintentional errors, as well as preventing malicious 

destruction 
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Command interpreter (shell) 

• A particular program that handles the interpretation of 

users’ commands and helps to manage processes 

– user input may be from keyboard (command-line interface), 

from script files, or from the mouse (GUIs) 

– allows users to launch and control new programs 

• On some systems, command interpreter may be a 

standard part of the OS (e.g., MS DOS, Apple II) 

• On others, it’s just non-privileged code that provides 

an interface to the user 

– e.g., bash/csh/tcsh/zsh on UNIX 

• On others, there may be no command language 

– e.g., MacOS 
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Accounting 

• Keeps track of resource usage 

– both to enforce quotas 

• “you’re over your disk space limit” 

– or to produce bills 

• timeshared computers like mainframes 

• hosted services 
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OS structure 

• It’s not always clear how to stitch OS modules 

together: 

Memory  
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I/O System 
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Command Interpreter 

Information Services 

Error Handling 
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OS structure 

• An OS consists of all of these components, plus: 

– many other components 

– system programs (privileged and non-privileged) 

• e.g., bootstrap code, the init program, … 

• Major issue: 

– how do we organize all this? 

– what are all of the code modules, and where do they exist? 

– how do they cooperate? 

• Massive software engineering and design problem 

– design a large, complex program that: 

• performs well, is reliable, is extensible, is backwards 

compatible, … 
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Early structure: Monolithic 

• Traditionally, OS’s (like UNIX) were built as a 

monolithic entity: 

everything 

user programs 

hardware 

OS 
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Monolithic design 

• Major advantage: 

– cost of module interactions is low (procedure call) 

• Disadvantages: 

– hard to understand 

– hard to modify 

– unreliable (no isolation between system modules) 

– hard to maintain 

• What is the alternative? 

– find a way to organize the OS in order to simplify its design 

and implementation 
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Layering 

• The traditional approach is layering 

– implement OS as a set of layers 

– each layer presents an enhanced ‘virtual machine’ to the layer above 

• The first description of this approach was Dijkstra’s THE system 

– Layer 5:  Job Managers (Execute users’ programs) 

– Layer 4:  Device Managers (Handle devices and provide buffering) 

– Layer 3:  Console Manager (Implements virtual consoles) 

– Layer 2: Page Manager (Implements virtual memories for each process) 

– Layer 1: Kernel (Implements a virtual processor for each process) 

– Layer 0: Hardware 

• Each layer can be tested and verified independently 
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Problems with layering 

• Imposes hierarchical structure 

– but real systems are more complex: 

• file system requires VM services (buffers) 

• VM would like to use files for its backing store 

– strict layering isn’t flexible enough 

• Poor performance 

– each layer crossing has overhead associated with it 

• Disjunction between model and reality 

– systems modeled as layers, but not really built that way 
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Hardware Abstraction Layer 

• An example of layering in 

modern operating systems 

• Goal: separates hardware-

specific routines from the “core” 

OS 

– Provides portability 

– Improves readability 

Core OS 

(file system,  

scheduler,  

system calls) 

Hardware Abstraction 

Layer 

(device drivers,  

assembly routines) 



22 

Microkernels 

• Popular in the late 80’s, early 90’s 

– recent resurgence of popularity  

• Goal: 

– minimize what goes in kernel 

– organize rest of OS as user-level processes 

• This results in: 

– better reliability (isolation between components) 

– ease of extension and customization 

– poor performance (user/kernel boundary crossings) 

• First microkernel system was Hydra (CMU, 1970) 

– Follow-ons: Mach (CMU), Chorus (French UNIX-like OS), OS X (Apple), in 

some opinions Windows NT (Microsoft) 

• Windows NT (aka XP/Vista/Win7) designed as microkernel but 

executed as single kernel-mode image 
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Microkernel System Structure 
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Summary and Next Topic 

• Summary 
– OS design has been a evolutionary process of trial and error.  

Probably more error than success 

– Successful OS’s designs have run the spectrum from 
monolithic, to layered, to micro kernels, to virtual machines 

– The role and design of an OS is still evolving 

– It is impossible to pick one “correct” way to structure an OS 

• Next Topic 
– Processes, one of the most fundamental pieces in an OS 

– What is a process, what does it do, and how does it do it 


